

Interoperability in Astronomical Science Metadata Model Mapping

Michael Johnson & Erin Brassfield Bourke

June 2025

Overview

e-MERLIN - Multi-Dish Radio telescope with no public facing archive

CAOM - Metadata archive model designed for single-dish optical astronomy observations

Square peg → **Round hole**

Does the interoperability of using a standardised model compensate for the complexity added by applying it outside of what it was designed for?

e-MERLIN

Multi-Element Radio Linked Interferometer Network (MERLIN)

Science includes:

- Evolution of the Universe
- Physics of extreme conditions
- Stellar, Galaxy and Planetary Evolution

2009-present, e-MERLIN

1990-2009, MERLIN

1980-1990, MTLRI

Image credit: https://www.e-merlin.ac.uk/

Common Archive Observation Model (CAOM)

Designed by Canadian Astronomical Data Center

Focus on Findability and Accessibility

Applied to all of the CADC's optical telescopes

Contains metadata on:

- telescope, target, proposal
- time, energy, provenance
- data product metadata (size, hash value, availability)

Observation

Planes 0..*

artifacts 0..*

CaomEntity

id: UUID

lastModified : Date maxLastModified : Date

metaChecksum : URI accMetaChecksum : URI

metaProducer (0..11 : URI

0-D

p-a

Artifact

▲a-p

parts 0..*

Part

chunk 0..*

р-с

Optical Astronomical Data

James Webb Space Telescope. Image credit: https://www.jwst.nasa.gov/content/webbLaunch/whereIsWebb.html

Ring Nebula. Image credit: https://www.ucl.ac.uk/news/2023/aug/james-webb-space-tele scope-captures-stunning-images-ring-nebula

Radio Astronomical Data

Representation of Radio Data

Measurement Sets

- Hierarchical tabular data
- Coupled data and metadata
- Similar to HDF5

Data format is specific to multi-antenna radio astronomy ONLY

Incompatibilities

- The multiplicity for telescope and targets in CAOM is 1
- Radio metadata ≠optical metadata
- No way to model some radio metadata
- Extraneous optical specific information in model

Figure 2. Jupiter, captured with the same equipment in good (left) and bad (right) seeing conditions. Cliff Ashcraft, New Jersey, USA

Solutions

Adapting the model itself, new radio-specific additions
Bending the model

- Extra observations per telescope/target
- Adding information as keywords
- Leaving many fields unused

Implementation

An advantage of using and existing model is infrastructure

Query service

Database schema

User interface

Testing the Implementation - Use Cases

16 use cases were formulated to verify the application of the model

The primary focus being findability for the archive

For example:

As an astronomer, I want to be able to use geometric spatial searches for my target data

Use Cases - Information loss

Navy - not required Yellow - required and present in CAOM Turquoise - required and not present in CAOM

uk SRC

Does the interoperability of using a standardised model compensate for the complexity added by applying it outside of what it was designed for?

Pros

Cons

Interoperability

Existing infrastructure

User familiarity

Community enrichment

Query complexity
Information loss

Superfluous DB fields

DM knowledge barrier

Metadata modelling (use and creation) takeaways

- Drive the data model decision with Use Cases!
- Simplify first, iterate with added fields afterwards.
- When mapping gets complex, go back to use cases.
- Correct model architecture is more important than field inclusion.

Conclusions

What aspects does your application prioritize?

Completeness, query and storage efficiency -> build your own data model

Accessibility, and interoperability -> consider using existing data models

